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| Concept of Stability '

@ A configuration (equilibrium state] is stable if a small
erturbation (disturbance) results in a small change
in the configuration.

@ The orlq:nal configuration is restored upon the
removal of the disturbance.

Example: A small ball, displaced from its original
configuration, on a surface.

Types of Equilibrium: stable, neutral, unstable.

I 7%
stable neutral unstable




Stability Criteria ' ’

@ Static criterion: equilibrium

method - based on studying the
equilibrium of an adjacent
configuration.

@ Energy criterion: energy method
static - based on studying the
changes in the total potential
energy in going from the original
to a neighboring configuration.

@ Dynamic criterion: dynamic

method - based on studying the
motion resulting from a small
disturbance.




Definitions ’

@ Rigid bar - spring systems - systems with
finite number of degrees of freedom

Al%ebraic eigenvalue problem (system
of homogeneous algebraic equations)

@ Deformable columns - distributed systems

Homogeneous differential equation
and homogeneous boundary
conditions

Structures with and without |
Postbuckling Strength
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Structures with and without |
Postbuckling Strength
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Stability of Columns (or Struts) ’

Axially Loaded Rigid Bar with a Pin and

a Linear Elastic Support

a) Equilibrium (Euler) Method

@ Studying the equilibrium of
an adjacent configuration (to
the original one)

Spring force = kV
where k = spring stiffness

OMtotl;nents about the support
a

- Disturbing moment = Pv
- Restoring moment = kvL

uns'table
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Stability of Columns (or Struts) '

Axially Loaded Rigid Bar with a Pin and

a Linear Elastic Support

a) Equilibrium (Euler) Method

] Mtot;nents about the support
a

- Disturbing moment = Pv
- Restoring moment = kvL

@ Three different states of
equilibrium can be identified:
- Stable equilibrium P<KL
- Unstable equilibrium P>kL

- Neutral equilibrium P = kL

Stability of Columns (or Struts) '

Axially Loaded Rigid Bar with a Pin and

a Linear Elastic Support
a) Equilibrium (Euler) Method

@ Neutral equilibrium
corresponds to the
onset of buckling -
presence of two
equilibrium
states:

- Original - unstable
- Deformed - stable




Stability of Columns (or Struts) '

Axially Loaded Rigid Bar with a Pin and

a Linear Elastic Support
a) Equilibrium (Euler) Method

- This is referred to as
bifurication of equilibrium.

- The value of P associated
with the neutral
equilibrium stateis
referred to as bifurcation
(or Euler) buckling load.

Stability of Columns (or Struts) '

Axially Loaded Rigid Bar with a Pin and

a Linear Elastic Support
b) Energy Method

W, = vertical displacement
of pointa = L(1-cos0)

)] = % L o2

Aw = work done by the
axial force P = Pw,

1 2
=3PLO

unstable
uilibrium

neutral




Stability of Columns (or Struts) )

Axially Loaded Rigid Bar with a Pin and

a Linear Elastic Support
b) Energy Method

AW = work done by the
axial force P = Pw,

1 2
=5PLO

A U = strain energy in the
: 1 2
spring =5K (LO)




Stability of Columns (or Struts) ’

Axially
a Linear Elastic Support

b) Energy Method

The three different
equilibrium states

correspond to:
[AU>AW - stable equilibrium

AU <AW - unstable equilibrium
AU =Aw - neutral equilibrium

Loaded Rigid Bar with a Pin and

uns‘table
uilibrium

neutral

Stability of Columns (or Struts) '

Axially Loaded Rigid Bar with a Pin and

a Linear Elastic Support
b) Energy Method

Bifurcation buckling (critical)
load corresponds to:

Au=Aw

or

P.. = kL

unstable
uilibrium

neutral




Stability of Columns (or Struts) ’
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c) Equilibrium Method |E, o — 2
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Stability of Columns (or Struts) .

c) Equilibrium Method

Equilibrium of deformed
configuration

Payl-(20,-04)k=0
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Stability of Columns (or Struts) .

Characteristic Equation (Quadratic Equation in P)

LZP2-4KkLP+3k%=0

s K =
Pcr1__ = (1.1 —(12 Ly

011=0:2

Pcr2=3,E:_ a1=_a2 /‘\
\
W Oa==04
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Stability of Columns (or Struts) ’

d) Energy Method

W, = L|1 - cos a5 +L(‘I—-cos<11

K K
P P~ P
+L1—cos(a1—a2] VY &—=9 Y
L 2
§§a§+u$+(u1—a2] —| =W,
I -
=L uf — o4Oy + ag) 4L oL
Oy =02
W = work done by axial force |[= Pw,
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Stability of Columns (or Struts) ’

d) Energy Method

U = strain energy in springs

= § k(205 aq)* (204 - @p)®

Il = total potential energy

For stable equilibrium I1 is minimum

| J+Wa
dl _dl _g \& s
o4 O
L B 4L (e P\ B
Ly =0

Stability of Columns (or Struts) '

d) Energy Method

gl—n =0 » '-K(zﬂ.z =0y ) + 2'((2(11 = (12]— PL[2(I.1 — (12] =0
1

E =0 o 21((2112 - 04 ) - x(za.l - (12]— PL(-(L, ol 20.2) =0
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Stability of Columns (or Struts) ’

d) Energy Method

Characteristic Equation (Quadratic in P):
LZpZ-4LkP +3k2=0

= K
Perq =L

=2K

<
B =02 0;\1}\/ OL2=—U4
= K

Pcr— L
Pcr=3%

Stability of Columns (or Struts) .

Two-Degrees of Freedom System

Equilibrium Method
Bending momentata=0
" a b cp
Pvo-Kvy-2L-Kvq-L=0 A j’,{ 5;(
—L——L—

Bending momentatb =0
P(va-vq)-Kvy-L=0

v =
or ‘
- kL P-le.l{v1}=0 =

-P P-xL [|Vv2







Stability of Columns (or Struts) ’

Two-Degrees of Freedom System A
Vi
Characteristic Equation \v,
P2-3xLP+k2L%=0 \I"'\v
P=0.382«L
b c
or [P=2618kL Pern .p
Y ”éllf B«
Energy Method —L—rp—L—
W, =L(1-cos 04)+L(1~-cos 0,) Vs
V4
" 2 2 )
=lLef+1L03 \+ }—P
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V4
Vs
Vv
1 Vv,




Stability of Columns (or Struts) ’

Two-Degrees of Freedom System

a b cp
P_. F
where », ,5,,*‘ B
v [e—L—>—L—
0=-1 ‘
I v,
Vi
= V2 - V1 w AT P
92 L Kv, KV,

W = work done by axial force

=) (2]

U = strain energy in springs

Stability of Columns (or Struts) .

Two-Degrees of Freedom System

a b

P 2P

=%KV$+%KV§ B, ,é,": 2K

L L—

[T=U-W .

Vi
oIl _ ol _ w p
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Stability of Columns (or Struts) ’

Characteristic Equation = b =
N
P?_3xP,. 2.0 -
e f— L—rf—L—

P=0.382«L /]\
Vi
or \ vV,

P=2618«L

Stability of Columns (or Struts) '

Axially Loaded Slender Column with Simply
Supported Ends

Equilibrium Method

Studying the equilibrium of a portion| #f
in an adjacent configuration

=-Pv

d?v
= E| M ¥
dz?

or 2
dv . P

&z EH Y




Stability of Columns (or Struts) '

Axially Loaded Slender Column with Simply
Supported Ends

M=-Pv

2
= E| dJ
dz?

or

dv . P . o
dzz+E|v 0

which is a homogeneous
ordinary differential
equation.




Stability of Columns (or Struts) ’

Boundary Conditions

Atz =0 andL , v= 0
Homogeneous boundary conditions.

General solution of the
differential equation is:

v=Asinﬁ/% z+Bcosﬁ/% z

where A and B are constants.

Applying the boundary conditions

At z=0, v=0 B=0 5
Asm../ﬁ L=0

At z=L, v=0
Stability of Columns (or Struts) ]

Applying the boundary conditions

At z=0, v=0
A sin 1/ L 0

Atz=L, v=0
EitherA= 0—v=0 no bucklmg

or,
i R =) — B =
sm\/ElL 0 ﬂ/E'L nm

where n is an integer (n=1,2,3...)

P= .nznzﬂ
L2




Stability of Columns (or Struts) ’

Either A= 0—v=0 no buckling

or, sin\/§L=0—-\/§L=nn

where n is an integer (n=1,2,3...)

o
[
—
N
=]
N
m
>R

Lowest critical load corresponds |
ton=1.

_ n2El
Pcr‘ Lz

Stability of Columns (or Struts) .

Higher buckling loads

2 Per
n=2—p=42%

i

2
n=3 —p=9gnEl

L

v=Aﬁn%¥




Pcr 4Pcr. 9Pcr

n= n= n=3

4
PCI' 4Pcr1 9Pch

Stability of Columns (or Struts) '

= A sin N7Z
:IvAsmL

Note that the homogeneous
differential and the
homogeneous boundary
conditions characterize

an eigenvalue problem. The
values of \/g for nontrivial
solution (v # 0) are called
eigenvalues, and the

associated v's are called Per
eigenfunctions.




Stability of Columns (or Struts) )

Energy Method
Axial shortening (displacement) of the column is
given by

w-L-L" dzst
-

where

B ~L
L= f ds, L*=J dz |1 TT . Buckled
0 0 LL

\¥ nositi
ML position
/

but, I I
y, v

(ds)? = (dz)? + (dv)? []

W = Lﬂ

T T Buckled
L L*

/ posmon
;

Yy, V




Stability of Columns (or Struts) ’

:I but,

(ds)? = (dz)? + (dv)?

z|

[]

N
rFe—r-
S

g~

Y, v«-u

\ Buckled
" T
iL position
/

Stability of Columns (or Struts) '

/AW= work done by the external force P

g

/AU = strain energy of
the beam

'
-fo IMcdz[]

i

z.
Tt

Z

Y

v
P
o,




Stability of Columns (or Struts) )

where
_ d¥% z
=7 22 &
| 4
2 B M,
=_g 9V f
dz?




Stability of Columns (or Struts) ’

Assuming |V =Asin n%z ]

which satisfies the boundary conditions of v=0
atz=0andz=L

2
AW = % n2A2

EAJEIJEIJET|

AU = T°El a2
4.’

Stability of Columns (or Struts) '

which satisfies the boundary conditions of v =0
atz=0andz=L

AW = E;[_E n2A2

Bifurcation buckling load
] corresponds to: | AU = AW

P _nzﬂszl
or |Per="75

EIREIPEIIED




Critical Stresses in Columns '

If at buckling the material of the column is stressed
within the elastic range, then

O

ek
A

- n2El
L2

Ccr.

/A

But I = A r? where r = radius of
gyration of the cross section.

Then

Ger

- T*E
(L1r)?

\¥ i
i Pposition

Buckled

!

where L/r is called the slenderness ratio.

Eccentrically Loaded Columns ’

If the column is loaded eccentrically - the load is
displaced at distance e from the centerline. Then

- e
M, = P(v+ X z)
dv
=_E|7
dz?
or
dv, P - _P
a2 "EY BH%

P P‘.“
i
\
T \ Displaced
L i,/posmon

MV

M,
!

which is a nonhomogeneous ordinary

differential equation.




‘!/position

1 Displaced

X

N—| =

Pe/L

Boundary Conditions

Atz=0,L,v=0

homogeneous boundary conditions.

General solution of the differential

equation is:

v=Asin\/%z+Bcos\/%z—%z

Applying the boundary conditions, then

v=e(ﬂn

i i

Elz/sin

El

Py =z
LL

ls




~ Eccentrically Loaded Columns !

z
] P
For certain values of P, the denominator | | i r,g.ﬁssﬁi?gﬁd
— iy
; !
sin % L| becomes zero, and the |y<‘l
z
deflection becomes infinitely large. L_V,|
The corresponding values of P are the .| P
critical buckling loads. .f" —>Pe/L
Z
Pe/L
y
e

Eccentrically Loaded Columns ’

Axially Loaded Slender Columns with General End
Restraints

If the governing homogeneous differential equation
for an axially loaded column, with constant El

z
dv . P A
A N TS R
azz T E v=0 [] K, _IP
is differentiated twice with ks,
respect to z,, the following \ Disol
g v \ placed
fourth-order differential L " position

equation is obtained: i

dv , P d¥ K,
+ =0 Y
et B gt 0 ) vtk




i Displaced
j/position
I

Eccentrically Loaded Columns '

The general solution of the differential equation is:

v=Asin,/%z+Bcosﬁ/%z+Cz+D ]

where A, B, C, and D are

z
constants, to be determined 4
'] from four boundary K, |P
conditions - two at each "
end of the column. \ 2
e i Displaced
The boundary conditions ! o
specify: L :“/ position

displacement v !

Ky E
slope (or rotation) g—: y“"ﬁ Ky




- Eccentrically Loaded Columns !

The boundary conditions
specify:

displacement v

slope (or rotation) g-:

bending moment

M, =-EI d—zz
shearing force

= d3v
Vy =-EIl dz3

Effect of End Restraints on |
Buckling Loads

Basic Case - simply supported coumn
(Euler buckling load) 2E]




P=2P, P<P<4P,

N

S\
deﬁlo-?f- T

j" ‘-4

L]

4
L N

Basic case

K=1 K=0.7 K= f(x,E1NL)

Effect of End Restraints on "
Buckling Loads

End constraints can be accounted for by finding
the effective length Lg (length of a simply
supported column) that would have the same
critical load as that of the original column.




Effect of End Restraints on )
| Buckling Loads

Per=

Ger=

n2E|

(Le)”
n2E

where

Basic case

K=1

K=%

K= f(x,E1/L)

Inelastic Column Theory ’

The critical ©

2E
(Lefr)?

cr

assumes that buckling occurs before yielding
(columns with sufficiently large L /r )

For small values of

replacing the Young's modulus E

Lolr

modulus

E

where

Engesser suggested

by the tangent
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cr
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| Inelastic Column Theory '

Columns Subjected to More Than One
Concentrated Load

1. Write the differential
equation for each beam |c.»

segment and find the Y
general solution.

2. Apply both the boundary
conditions at the supports
and the continuity conditions
at the points of application

of concentrated loads.

»Z

C.P




Inelastic Column Theory '

2. Apply both the boundary
conditions at the supports
and the continuity conditions
at the points of application
of concentrated loads.

VL=V,

INL_VD - .
v

dv| _dv
dz|, dzl,




| Inelastic Column Theory '

3. The resulting homogeneous equations in step 2
define the eigenvalue problem, from which the

buckling load can be obtained.
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